

Refined Vertex Sparsifiers of Planar Graphs

Robert Krauthgamer, Inbal Rika

Weizmann Institute of Science, Rehovot, Israel robert.krauthgamer@weizmann.ac.il, inbal.rika@weizmann.ac.il

Cut Sparsifiers

Let G be an undirected network with edge capacities $c: E(G) \rightarrow R^+$ and k terminals $T \subseteq V(G)$.

Elementary Cutsets

For $S \subset T$, let $E_S \subseteq E(G)$ be the cutset that separates between S and \overline{S} in G with minimum capacity, i.e. $c(E_S) = mincut_G(S)$.

Definition 5. A minimum cutset E_S is called an elementary cutset if $G \setminus E_S$ has exactly 2 connected components.

Terminal-Cuts Scheme

Definition 12. A *terminal-cuts scheme* (TC-scheme) is a data structure that support the following two operations on a k-terminal network G of size n and $c: E \rightarrow \{1, ..., n^{O(1)}\}$.

Preprocessing.

Which gets G, and builds storage (memory) M.

We care about **terminal cuts**:

 $mincut_G(S) = minimum-capacity cut$ separating $S \subset T$ and $\overline{S} = T \setminus S$.

Definition 1. A network *H* is a (*q*, *s*)-cut sparsifier of G if $|V(H)| \leq s$ and $\forall S \subset T$, mincut_G(S) \leq mincut_H(S) $\leq q \cdot$ mincut_G(S).

Question 2. What is the **best tradeoff** between the quality q and the size s of (q, s)-cut sparsifier for kterminal networks?

 $\mathcal{T}_e(G) \coloneqq \{S \subset T \mid E_S \text{ is an elementary cutset}\}$.

Theorem 6. Every minimum cutset E_{S} can be decomposed into a disjoint union of elementary cutsets, i.e. $\exists \phi \subset \mathcal{T}_e(G)$ such that $E_S = \bigcup_{S' \in \phi} E_{S'}$.

We show that only elementary cutsets matter.

Theorem 7. Let G, H be networks with the same terminals T. If $\mathcal{T}_e(G) = \mathcal{T}_e(H)$, and $\forall S \in \mathcal{T}_{e}(G), \operatorname{mincut}_{G}(S) \leq \operatorname{mincut}_{H}(S) \leq q \cdot \operatorname{mincut}_{G}(S),$ then H is a cut sparsifier of quality q of G.

Improved Mimicking Networks for Planar Graphs

Theorem 8. \forall planar k-terminal network G with $\gamma = \gamma(G)$ $\exists p = O(2^{\gamma}k^2)$ subsets of edges $E_1, \dots, E_p \subset E$, such that every elementary cutset E_S in G can be decomposed into a disjoint union of these E_i 's.

Query. Which gets $S \subset T$, and uses M to output mincut_G(S).

Theorem 13. \forall *k*-terminal network *G* \exists a TC-scheme with size(M) $\leq O(|\mathcal{T}_e(G)|(k + \log n))$ bits.

Theorem 14. \forall planar k-terminal network G with $\gamma = \gamma(G) \exists a \mathsf{TC}$ -scheme with size(M) $\leq O(2^{\gamma}k^2(\gamma + \log n))$ bits.

In addition:

Equivalence Between Cut and Distance Sparsifiers.

Definition 15. A network *H* is called a (q, s) – Distance Approximating Minor (DAM) of G, if H is a minor of G, $|V(H)| \leq s$ and $\forall t,t' \in T, \ d_G(t,t') \leq d_H(t,t') \leq q \cdot d_G(t,t').$

Theorem 16. Let G be a planar k-terminal network with

Definition 3. A *mimicking network* is a cut sparsifier of quality q = 1, *i.e.* $\forall S \subset T$, mincut_H(S) = mincut_G(S).

Question 4. What is the **smallest** mimicking network size for every k-terminal network G?

For a planar k-terminal network G, let $\gamma(G)$ be the minimum number of faces that are incident to all the terminals of G.

Known and New Bounds for Mimicking Networks

Graphs	Size	minor	Reference
General	2 ^{2^k}	No	[HKNR98, KR14]

Proof Idea.

- Elementary cutset E_S in $G \rightarrow E_S^*$ simple cycle in dual G^* .
- Decompose E_{S}^{*} into simple paths $P_{1} \dots P_{l}$.
- Characterize each P_i independently of E_S^* .
- Bound the number of different P_i by $f(\gamma)$ instead of f(k).

Theorem 9. \forall planar k-terminal network G with $\gamma = \gamma(G)$ \exists a minor mimicking network of size $O(\gamma 2^{2\gamma} k^4)$.

 $\gamma(G) = 1$ and with edge-capacities.

One can construct a planar k-terminal network G' with $\gamma(G) = 1$ and with edge-lengths, such that

G' admits a (q, s)-DAM \rightarrow G admits a minor (q, O(s))-cut sparsifier.

Theorem 17. Let G be a planar k-terminal network with $\gamma(G) = 1$ and with edge-lengths.

One can construct a planar k-terminal network G' with $\gamma(G) = 1$ and with edge-capacities, such that

References.

[HKNR98] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizing multiterminal flow networks and computing flows in networks of small treewidth.

[KR13] R. Krauthgamer and I. Rika. Mimicking networks and succinct representations of terminal cuts.

[KR14] A. Khan and P. Raghavendra. On mimicking networks representing minimum terminal cuts.

Theorem 10. \forall planar k-terminal network G, such that $\forall S, S' \in \mathcal{T}_e(G)$ the graph $G \setminus (E_S \cup E_{S'})$ has at most α connected components, \exists a minor mimicking network H of size $O(\alpha \cdot |\mathcal{T}_e(G)|^2)$.

 \forall planar k-terminal network G, $\alpha \leq k$ and $|\mathcal{T}_e(G)| \leq 2^k$

Corollary 11. \forall planar k-terminal network G \exists a minor mimicking network of size $O(k2^{2k})$.

G' admits a minor (q, O(s))-cut sparsifier \rightarrow G admits a (q, s)-DAM.

Consequently, the same (q, s) bounds hold for distance sparsifiers and for cut sparsifiers.